
Pál Erdös and Zygmunt Zahorski
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Probably some Readers ask themselves what connected these two great mathe-
maticians (who were of the same age, coincidentally). Taking into considerations the
interests of P. Erdös (see for example [1, 10], and everyone is quite well informed that,
above all, it is about the discrete mathematics and the number theory) our suspicions
fall on the trigonometric series and that is pretty right.

Professor Zahorski formulated in 1957 in Colloquium Mathematicum (see [12]) the
problem of determination of the best possible estimation from above of the following
integral

2π
∫

0

| cos k1x+ cos k2x+ . . .+ cos knx| dx,

where 0 < k1 < k2 < . . . < kn are integers. He observed that by applying the
Schwartz inequality and by using the orthogonality of trigonometric system we get
the estimation c

√
n. Moreover, Zahorski conjectured that c log kn is valid as well.

P. Erdös solved Zahorski’s problem and the conjecture. In paper [4] published in
1960 in Colloquium Mathematicum he obtained the following two results.

At first, Erdös proved that for every ε > 0 there exists c = c(ε) > 0 such that
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for every n ∈ N.
Secondly, Erdös proved the existence of increasing sequence {ki}∞i=1

of natural
numbers such that
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which proves that O(
√
kn) is the best estimation (so Zahorski’s conjecture was not

true). We note that from Zahorski’s observation it follows that

lim sup
kn
n

< ∞.

Four redactional remarks

1. Let n ∈ N, a1, a2, . . . , an−1 ∈ R if n > 2 and at least one ak 6= 0. Then the
function

f(x) = cosnx+ an−1 cos(n− 1)x+ . . .+ a2 cos 2x+ a1 cosx

takes the positive as well as the negative values (the elementary proof is given
in [9], see Theorem 1.7 and Remark 1.8). This fact follows also easily from the
classical Sturm-Hurwitz Theorem on the lower bound of the number of roots of
trigonometric polynomial (see [5, 7, 11]).

Theorem (C. Sturm, 1836, A. Hurwitz, 1903). Let

f(x) =

N
∑

k=n

(ak cos kx+ bk sin kx),

where n,N ∈ N and ak, bk are real numbers. Then the number of sign changes
of f is at least equal to 2n.

2. Let n ∈ N. Let us put

cn := min

{

n
∑

k=1

| cos kx| : x ∈ R

}

.

Then cn = ⌊n/2⌋ for every n > 2 with exceptions
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≈ 2.97 < 3.

It was proven by M.B. Munoz, E.F. Moral, J.B. Sagasta, L. Mercedes, M. Mer-
cedes, S. Benito, J.B.L. Bunuel in Crux Mathematicorum (see [9], Theorems 10.3–
10.9).
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3. Paul Cohen proved in [2] the following theorem.

Theorem. For some k > 0 and for all N ∈ N, N ≥ 3, we have
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, (1)

whenever nj are the distinct integers (also negative) and cj ∈ C satisfy condition
|cj | ≥ 1.

Corollary 1. For every increasing sequence of nonnegative integers n1 < n2 <
... < nN we have
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for some k > 0 and N ∈ N, N ≥ 2.

Corollary 2. For every increasing sequence {nj}∞j=1
of nonnegative integers we

obtain

lim
N→∞
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Harold Davenport in [3] proved that power 1/8 in the right hand side of (1) (and,
in consequence, in (2) as well) could be replaced by 1/4 and the constant k by
number 1/8.

4. In 2014 year Ferenc Móricz published in Notices of the AMS a very interesting
and beautiful paper [8] dedicated to the memory of Pál Erdös on the 100th an-
niversary of his birthday. Subject matter, discussed in this paper, especially the
generalized Rademacher-Menshov maximal moment inequality is directly con-
nected with the object of our note. Extremely intriguing is also the description
by Móricz of some Erdös theorem on the convergence a.e. of trigonometric series
satisfying the so-called (B2) Erdös condition, which is the generalization of the
Kolmogorov Theorem [6] on the convergence a.e. of the lacunary trigonometric
series. It suggests another connotation to the Kolmogorov – Zahorski mathemat-
ical relations (especially in reference to other Kolmogorov Theorem proved by
Zahorski in paper [13]).
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